Search results
Results from the WOW.Com Content Network
In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.
In logic, a rule of replacement [1] [2] [3] is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a ...
As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0). Here is another geometric point of view. Draw the unit circle, and let P be the point (−1, 0).
Here, the substitution function (v 1,...,v n) = φ(u 1, ..., u n) needs to be injective and continuously differentiable, and the differentials transform as: = | (, …,) |, where det(Dφ)(u 1, ..., u n) denotes the determinant of the Jacobian matrix of partial derivatives of φ at the point (u 1, ..., u n). This formula expresses the fact that ...
Linear fractional transformations leave cross ratio invariant, so any linear fractional transformation that leaves the unit disk or upper half-planes stable is an isometry of the hyperbolic plane metric space. Since Henri Poincaré explicated these models they have been named after him: the Poincaré disk model and the Poincaré half-plane model.
In a set of rules, an inference rule could be redundant in the sense that it is admissible or derivable. A derivable rule is one whose conclusion can be derived from its premises using the other rules. An admissible rule is one whose conclusion holds whenever the premises hold. All derivable rules are admissible.
Polynomial transformations have been applied to the simplification of polynomial equations for solution, where possible, by radicals. Descartes introduced the transformation of a polynomial of degree d which eliminates the term of degree d − 1 by a translation of the roots. Such a polynomial is termed depressed. This already suffices to solve ...
For example, the physicist Albert Einstein's formula = is the quantitative representation in mathematical notation of mass–energy equivalence. [ 1 ] Mathematical notation was first introduced by François Viète at the end of the 16th century and largely expanded during the 17th and 18th centuries by René Descartes , Isaac Newton , Gottfried ...