Search results
Results from the WOW.Com Content Network
In spectroscopy, collision-induced absorption and emission refers to spectral features generated by inelastic collisions of molecules in a gas. Such inelastic collisions (along with the absorption or emission of photons) may induce quantum transitions in the molecules, or the molecules may form transient supramolecular complexes with spectral features different from the underlying molecules.
Spectral emission occurs when an electron transitions, or jumps, from a higher energy state to a lower energy state. To distinguish the two states, the lower energy state is commonly designated as n′, and the higher energy state is designated as n. The energy of an emitted photon corresponds to the energy difference between the two states ...
The Stark effect can be observed both for emission and absorption lines. The latter is sometimes called the inverse Stark effect , but this term is no longer used in the modern literature. Lithium Rydberg -level spectrum as a function of the electric field near n = 15 for m = 0.
The absorption spectrum of a chemical element or chemical compound is the spectrum of frequencies or wavelengths of incident radiation that are absorbed by the compound due to electron transitions from a lower to a higher energy state. The emission spectrum refers to the spectrum of radiation emitted by the compound due to electron transitions ...
A hydrogen atom with proton and electron spins aligned (top) undergoes a flip of the electron spin, resulting in emission of a photon with a 21 cm wavelength (bottom) The hydrogen line, 21 centimeter line, or H I line [a] is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms.
Schematic of energy levels involved in two photons absorption. In atomic physics, two-photon absorption (TPA or 2PA), also called two-photon excitation or non-linear absorption, is the simultaneous absorption of two photons of identical or different frequencies in order to excite an atom or a molecule from one state (usually the ground state), via a virtual energy level, to a higher energy ...
The photon absorption process leading to the ionization of atomic hydrogen can occur in reverse: an electron and a proton can collide and form atomic hydrogen. If the two particles were traveling slowly (so that kinetic energy can be ignored), then the photon the atom emits upon its creation will theoretically be 13.6 eV (in reality, the energy ...
The spectrum of radiation emitted by hydrogen is non-continuous or discrete. Here is an illustration of the first series of hydrogen emission lines: The Lyman series. Historically, explaining the nature of the hydrogen spectrum was a considerable problem in physics.