Search results
Results from the WOW.Com Content Network
When more accuracy is desired in modelling the diode's turn-on characteristic, the model can be enhanced by doubling-up the standard PWL-model. This model uses two piecewise-linear diodes in parallel, as a way to model a single diode more accurately. PWL Diode model with 2 branches. The top branch has a lower forward-voltage and a higher ...
In a diode model two diodes are connected back-to-back to make a PNP or NPN bipolar junction transistor (BJT) equivalent. This model is theoretical and qualitative. This model is theoretical and qualitative.
Semiconductor device modeling creates models for the behavior of semiconductor devices based on fundamental physics, such as the doping profiles of the devices. It may also include the creation of compact models (such as the well known SPICE transistor models), which try to capture the electrical behavior of such devices but do not generally ...
Diode logic (or diode-resistor logic) constructs AND and OR logic gates with diodes and resistors. An active device ( vacuum tubes with control grids in early electronic computers , then transistors in diode–transistor logic ) is additionally required to provide logical inversion (NOT) for functional completeness and amplification for voltage ...
These two modeling techniques use SPICE to solve a problem while the third method, digital primitives, uses mixed mode capability. Each of these methods has its merits and target applications. In fact, many simulations (particularly those which use A/D technology) call for the combination of all three approaches.
Diode–transistor logic (DTL) is a class of digital circuits that is the direct ancestor of transistor–transistor logic. It is called so because the logic gating functions AND and OR are performed by diode logic , while logical inversion (NOT) and amplification (providing signal restoration) is performed by a transistor (in contrast with ...
Simple models for the gain coefficient are often used to obtain a system of laser diode rate equations, enabling one to dynamically calculate the time-dependent laser response. An expression for the free-carrier gain is given in the article on semiconductor optical gain.
A diode matrix is a two-dimensional grid of wires: each "intersection" wherein one-row crosses over another has either a diode connecting them, or the wires are isolated from each other. It is one of the popular techniques for implementing a read-only memory. A diode matrix is used as the control store or microprogram in many