Search results
Results from the WOW.Com Content Network
In finance, bond convexity is a measure of the non-linear relationship of bond prices to changes in interest rates, and is defined as the second derivative of the price of the bond with respect to interest rates (duration is the first derivative). In general, the higher the duration, the more sensitive the bond price is to the change in ...
In the standard form it is possible to assume, without loss of generality, that the objective function f is a linear function.This is because any program with a general objective can be transformed into a program with a linear objective by adding a single variable t and a single constraint, as follows: [9]: 1.4
(Just as the duration gives the discounted mean term, so convexity can be used to calculate the discounted standard deviation, say, of return.) Note that convexity can be positive or negative. A bond with positive convexity will not have any call features - i.e. the issuer must redeem the bond at maturity - which means that as rates fall, both ...
The concept of strong convexity extends and parametrizes the notion of strict convexity. Intuitively, a strongly-convex function is a function that grows as fast as a quadratic function. [11] A strongly convex function is also strictly convex, but not vice versa.
In mathematical finance, convexity refers to non-linearities in a financial model.In other words, if the price of an underlying variable changes, the price of an output does not change linearly, but depends on the second derivative (or, loosely speaking, higher-order terms) of the modeling function.
The classes of s-convex measures form a nested increasing family as s decreases to −∞" . or, equivalently {} {}.Thus, the collection of −∞-convex measures is the largest such class, whereas the 0-convex measures (the logarithmically concave measures) are the smallest class.
Convexity is a geometric property with a variety of applications in economics. [1] Informally, an economic phenomenon is convex when "intermediates (or combinations) are better than extremes". For example, an economic agent with convex preferences prefers combinations of goods over having a lot of any one sort of good; this represents a kind of ...
then is called strictly convex. [1]Convex functions are related to convex sets. Specifically, the function is convex if and only if its epigraph. A function (in black) is convex if and only if its epigraph, which is the region above its graph (in green), is a convex set.