Search results
Results from the WOW.Com Content Network
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
Flipping a coin leads to two outcomes that are almost equally likely. Up or down? Flipping a brass tack leads to two outcomes that are not equally likely. In some sample spaces, it is reasonable to estimate or assume that all outcomes in the space are equally likely (that they occur with equal probability). For example, when tossing an ordinary ...
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
However, the conclusion that the sun is equally likely to rise as it is to not rise is only absurd when additional information is known, such as the laws of gravity and the sun's history. Similar applications of the concept are effectively instances of circular reasoning , with "equally likely" events being assigned equal probabilities, which ...
This can be represented mathematically as follows: If a random experiment can result in N mutually exclusive and equally likely outcomes and if N A of these outcomes result in the occurrence of the event A, the probability of A is defined by =. There are two clear limitations to the classical definition. [18]
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
These two non-atomic examples are closely related: a sequence (x 1, x 2, ...) ∈ {0,1} ∞ leads to the number 2 −1 x 1 + 2 −2 x 2 + ⋯ ∈ [0,1]. This is not a one-to-one correspondence between {0,1} ∞ and [0,1] however: it is an isomorphism modulo zero , which allows for treating the two probability spaces as two forms of the same ...
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.