enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...

  3. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  4. Barnard's test - Wikipedia

    en.wikipedia.org/wiki/Barnard's_test

    The probability of a 2 × 2 table under the first study design is given by the multinomial distribution; where the total number of samples taken is the only statistical constraint. This is a form of uncontrolled experiment, or "field observation", where experimenter simply "takes the data as it comes".

  5. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    The probability measure thus defined is known as the Binomial distribution. As we can see from the above formula that, if n=1, the Binomial distribution will turn into a Bernoulli distribution. So we can know that the Bernoulli distribution is exactly a special case of Binomial distribution when n equals to 1.

  6. Binomial test - Wikipedia

    en.wikipedia.org/wiki/Binomial_test

    This is because the binomial distribution becomes asymmetric as that probability deviates from 1/2. There are two methods to define the two-tailed p-value. One method is to sum the probability that the total deviation in numbers of events in either direction from the expected value is either more than or less than the expected value. The ...

  7. Binomial process - Wikipedia

    en.wikipedia.org/wiki/Binomial_process

    In these point processes, the number of points is not deterministic like it is with binomial processes, but is determined by a random variable . Therefore mixed binomial processes conditioned on K = n {\displaystyle K=n} are binomial process based on n {\displaystyle n} and P {\displaystyle P} .

  8. De Moivre–Laplace theorem - Wikipedia

    en.wikipedia.org/wiki/De_Moivre–Laplace_theorem

    Within a system whose bins are filled according to the binomial distribution (such as Galton's "bean machine", shown here), given a sufficient number of trials (here the rows of pins, each of which causes a dropped "bean" to fall toward the left or right), a shape representing the probability distribution of k successes in n trials (see bottom of Fig. 7) matches approximately the Gaussian ...

  9. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.