enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  3. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    In three-dimensional space, two linearly independent vectors with the same initial point determine a plane through that point. Their cross product is a normal vector to that plane, and any vector orthogonal to this cross product through the initial point will lie in the plane. [ 1 ]

  4. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Two distinct points always determine a (straight) line. Three distinct points are either collinear or determine a unique plane. On the other hand, four distinct points can either be collinear, coplanar, or determine the entire space. Two distinct lines can either intersect, be parallel or be skew.

  5. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space , the definite article is used, so the Euclidean plane refers to the whole space.

  6. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Line–plane_intersection

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  7. Polygonal modeling - Wikipedia

    en.wikipedia.org/wiki/Polygonal_modeling

    In Euclidean geometry, any three non-collinear points determine a plane. For this reason, triangles always inhabit a single plane. This is not necessarily true of more complex polygons, however. The flat nature of triangles makes it simple to determine their surface normal, a three

  8. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

  9. Cayley–Bacharach theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Bacharach_theorem

    d = 1: 2 and 1: two points determine a line, two lines intersect in a point, d = 2: 5 and 4: five points determine a conic, two conics intersect in four points, d = 3: 9 and 9: nine points determine a cubic, two cubics intersect in nine points, d = 4: 14 and 16. Thus these first agree for 3, and the number of intersections is larger when d > 3.