Search results
Results from the WOW.Com Content Network
The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}
Standard gravitational parameter: cubic meter per second squared mu nought Vacuum permeability or the magnetic constant henry per meter (H/m) nu: frequency: hertz (Hz) kinematic viscosity: meter squared per second (m 2 /s) neutrino: xi: electromotive force: volt (V)
After reducing the problem to the relative motion of the bodies in the plane, he defines the constant of the motion c 3 by the equation ẋ 2 + ẏ 2 = 2k 2 M/r + c 3, where M is the total mass of the two bodies and k 2 is Moulton's notation for the gravitational constant. He defines c 1, c 2, and c 4 to be other constants of the
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."
The product GM is the standard gravitational parameter and is often known to higher precision than G or M separately. The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero.
μ = G(M + m), a gravitational parameter, [note 2] where G is Newton's gravitational constant, M is the mass of the primary body (i.e., the Sun), m is the mass of the secondary body (i.e., a planet), and; p is the semi-parameter (the semi-latus rectum) of the body's orbit. Note that every variable in the above equations is a constant for two ...
The quantity GM —the product of the gravitational constant and the mass of a given astronomical body such as the Sun or Earth—is known as the standard gravitational parameter (also denoted μ). The standard gravitational parameter GM appears as above in Newton's law of universal gravitation, as well as in formulas for the deflection of ...
The quantity is often termed the standard gravitational parameter, which has a different value for every planet or moon in the Solar System. Once the circular orbital velocity is known, the escape velocity is easily found by multiplying by 2 {\displaystyle {\sqrt {2}}} :