Search results
Results from the WOW.Com Content Network
The transitive closure of the adjacency relation of a directed acyclic graph (DAG) is the reachability relation of the DAG and a strict partial order. A cluster graph, the transitive closure of an undirected graph. The transitive closure of an undirected graph produces a cluster graph, a disjoint union of cliques.
The transitive closure of a DAG is the graph with the most edges that has the same reachability relation as the DAG. It has an edge u → v for every pair of vertices ( u , v ) in the reachability relation ≤ of the DAG, and may therefore be thought of as a direct translation of the reachability relation ≤ into graph-theoretic terms.
If is acyclic, then its reachability relation is a partial order; any partial order may be defined in this way, for instance as the reachability relation of its transitive reduction. [2] A noteworthy consequence of this is that since partial orders are anti-symmetric, if s {\displaystyle s} can reach t {\displaystyle t} , then we know that t ...
closure 1. For the transitive closure of a directed graph, see transitive. 2. A closure of a directed graph is a set of vertices that have no outgoing edges to vertices outside the closure. For instance, a sink is a one-vertex closure. The closure problem is the problem of finding a closure of minimum or maximum weight. co-
A transitive orientation of a graph is an acyclic orientation that equals its own transitive closure. Not every graph has a transitive orientation; the graphs that do are the comparability graphs. [8] Complete graphs are special cases of comparability graphs, and transitive tournaments are special cases of transitive orientations.
The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962. [3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959 [4] and also by Stephen Warshall in 1962 [5] for finding the transitive closure of a graph, [6] and is closely related to Kleene's algorithm (published ...
The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R 1, R 2, ... . [8] The transitive closure of a relation is a transitive relation. [8]
However, the transitive closure of set membership for such hypergraphs does induce a partial order, and "flattens" the hypergraph into a partially ordered set. Alternately, edges can be allowed to point at other edges, irrespective of the requirement that the edges be ordered as directed, acyclic graphs.