enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.

  3. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...

  4. List of Fourier-related transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Fourier-related...

    These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients. When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued.

  5. Discrete Fourier series - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_series

    A Fourier series, by nature, has a discrete set of components with a discrete set of coefficients, also a discrete sequence. So a DFS is a representation of one sequence in terms of another sequence. Well known examples are the Discrete Fourier transform and its inverse transform. [1]: ch 8.1

  6. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This ...

  7. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    That is, it takes a function from the time domain into the frequency domain; it is a decomposition of a function into sinusoids of different frequencies; in the case of a Fourier series or discrete Fourier transform, the sinusoids are harmonics of the fundamental frequency of the function being analyzed.

  8. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    [note 3] Still further generalization is possible to functions on groups, which, besides the original Fourier transform on R or R n, notably includes the discrete-time Fourier transform (DTFT, group = Z), the discrete Fourier transform (DFT, group = Z mod N) and the Fourier series or circular Fourier transform (group = S 1, the unit circle ≈ ...

  9. Downsampling (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Downsampling_(signal...

    Let X(f) be the Fourier transform of any function, x(t), whose samples at some interval, T, equal the x[n] sequence.Then the discrete-time Fourier transform (DTFT) is a Fourier series representation of a periodic summation of X(f): [d]