enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Biasvariance_tradeoff

    In k-nearest neighbor models, a high value of k leads to high bias and low variance (see below). In instance-based learning, regularization can be achieved varying the mixture of prototypes and exemplars. [13] In decision trees, the depth of the tree determines the variance. Decision trees are commonly pruned to control variance. [7]: 307

  3. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Underfitting is the inverse of overfitting, meaning that the statistical model or machine learning algorithm is too simplistic to accurately capture the patterns in the data. A sign of underfitting is that there is a high bias and low variance detected in the current model or algorithm used (the inverse of overfitting: low bias and high variance).

  4. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  5. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    The resulting estimator is unbiased and is called the (corrected) sample variance or unbiased sample variance. If the mean is determined in some other way than from the same samples used to estimate the variance, then this bias does not arise, and the variance can safely be estimated as that of the samples about the (independently known) mean.

  6. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Reduces variance in high-variance low-bias weak learner, [13] which can improve efficiency (statistics) Can be performed in parallel, as each separate bootstrap can be processed on its own before aggregation. [14] Disadvantages: For a weak learner with high bias, bagging will also carry high bias into its aggregate [13] Loss of interpretability ...

  7. Ensemble averaging (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Ensemble_averaging...

    In any network, the bias can be reduced at the cost of increased variance; In a group of networks, the variance can be reduced at no cost to the bias. This is known as the biasvariance tradeoff. Ensemble averaging creates a group of networks, each with low bias and high variance, and combines them to form a new network which should ...

  8. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Detection bias occurs when a phenomenon is more likely to be observed for a particular set of study subjects. For instance, the syndemic involving obesity and diabetes may mean doctors are more likely to look for diabetes in obese patients than in thinner patients, leading to an inflation in diabetes among obese patients because of skewed detection efforts.

  9. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    Generally, there is a tradeoff between bias and variance. A learning algorithm with low bias must be "flexible" so that it can fit the data well. But if the learning algorithm is too flexible, it will fit each training data set differently, and hence have high variance.