Search results
Results from the WOW.Com Content Network
Nocedal is well-known for his research in nonlinear optimization, particularly for his work on L-BFGS [4] [5] and his textbook Numerical Optimization. [6] In 2001, Nocedal co-founded Ziena Optimization Inc. and co-developed the KNITRO software package. [7] Nocedal was a chief scientist at Ziena Optimization Inc. from 2002 to 2012 before the ...
Successive Linear Programming (SLP), also known as Sequential Linear Programming, is an optimization technique for approximately solving nonlinear optimization problems. [1] It is related to, but distinct from, quasi-Newton methods .
Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.
Due to its resulting linear memory requirement, the L-BFGS method is particularly well suited for optimization problems with many variables. Instead of the inverse Hessian H k , L-BFGS maintains a history of the past m updates of the position x and gradient ∇ f ( x ), where generally the history size m can be small (often m < 10 ...
Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.
In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving unconstrained nonlinear optimization problems. [1] Like the related Davidon–Fletcher–Powell method, BFGS determines the descent direction by preconditioning the gradient with curvature information.
It is a direct search method (based on function comparison) and is often applied to nonlinear optimization problems for which derivatives may not be known. However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points [ 1 ] on problems that can be solved by alternative methods.
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...