enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    An individual field line shows the direction of the vector field but not the magnitude. In order to also depict the magnitude of the field, field line diagrams are often drawn so that each line represents the same quantity of flux. Then the density of field lines (number of field lines per unit perpendicular area) at any location is ...

  3. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The direction of the magnetic field at any point is parallel to the direction of nearby field lines, and the local density of field lines can be made proportional to its strength. Magnetic field lines are like streamlines in fluid flow, in that they represent a continuous distribution, and a different resolution would show more or fewer lines.

  4. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    For the Earth, this could have been an external magnetic field. Early in its history the Sun went through a T-Tauri phase in which the solar wind would have had a magnetic field orders of magnitude larger than the present solar wind. [60] However, much of the field may have been screened out by the Earth's mantle.

  5. Magnetic flux - Wikipedia

    en.wikipedia.org/wiki/Magnetic_flux

    If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = ⁡, where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.

  6. Gauss's law for magnetism - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_magnetism

    The magnetic field B can be depicted via field lines (also called flux lines) – that is, a set of curves whose direction corresponds to the direction of B, and whose areal density is proportional to the magnitude of B. Gauss's law for magnetism is equivalent to the statement that the field lines have neither a beginning nor an end: Each one ...

  7. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses. The strength of the field is directly proportional to the magnitude of the current. The strength of the field at any point is inversely proportional to the distance of the point from the wire.

  8. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    For simplicity in calculations it is often convenient to consider a surface perpendicular to the flux lines. If the electric field is uniform, the electric flux passing through a surface of vector area A is = = ⁡, where E is the electric field (having the unit V/m), E is its magnitude, A is the area of the surface, and θ is the angle between ...

  9. Guiding center - Wikipedia

    en.wikipedia.org/wiki/Guiding_center

    If there is a force with a parallel component, the particle and its guiding center will be correspondingly accelerated. If the field has a parallel gradient, a particle with a finite Larmor radius will also experience a force in the direction away from the larger magnetic field. This effect is known as the magnetic mirror. While it is closely ...