Search results
Results from the WOW.Com Content Network
The Purnell equation is an equation used in analytical chemistry to calculate the resolution R s between two peaks in a chromatogram. [1] [2]= (′ + ′) where R s is the resolution between the two peaks
Gas solubility coefficients are used to calculate Henry's law constant: x g = p g / H {\displaystyle x_{g}=p_{g}/H} After manipulating equations and substituting volumes of each phase, the molar concentration of water (55.5 mol/L) and the molecular weight of the gas analyte (MW), a final equation is solved:
Chromatographic peak resolution is given by = + where t R is the retention time and w b is the peak width at baseline. The bigger the time-difference and/or the smaller the bandwidths, the better the resolution of the compounds.
It means that to increase resolution of two peaks on a chromatogram, one of the three terms of the equation need to be modified. 1) N can be increased by lengthening the column (least effective, as doubling the column will get a 2 1/2 or 1.44x increase in resolution).
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]
For example, the blood/gas partition coefficient of a general anesthetic measures how easily the anesthetic passes from gas to blood. [5] Partition coefficients can also be defined when one of the phases is solid , for instance, when one phase is a molten metal and the second is a solid metal, [ 6 ] or when both phases are solids. [ 7 ]
In gas chromatography, the Kovats retention index (shorter Kovats index, retention index; plural retention indices) is used to convert retention times into system-independent constants. The index is named after the Hungarian-born Swiss chemist Ervin Kováts , who outlined the concept in the 1950s while performing research into the composition ...
OpenChrom is an open source software for the analysis and visualization of mass spectrometric and chromatographic data. [4] Its focus is to handle native data files from several mass spectrometry systems (e.g. GC/MS, LC/MS, Py-GC/MS, HPLC-MS), vendors like Agilent Technologies, Varian, Shimadzu, Thermo Fisher, PerkinElmer and others.