enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  3. Dirac equation - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation

    A proper relativistic theory with a probability density current must also share this feature. To maintain the notion of a convected density, one must generalize the Schrödinger expression of the density and current so that space and time derivatives again enter symmetrically in relation to the scalar wave function.

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The field multivector, known as the Riemann–Silberstein vector, is = + = +, and the four-current multivector is = using an orthonormal basis {}. Similarly, the unit pseudoscalar is I = σ 1 σ 2 σ 3 {\displaystyle I=\sigma _{1}\sigma _{2}\sigma _{3}} , due to the fact that the basis used is orthonormal.

  5. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    By comparison with vector wave equations, the scalar wave equation can be seen as a special case of the vector wave equations; in the Cartesian coordinate system, the scalar wave equation is the equation to be satisfied by each component (for each coordinate axis, such as the x component for the x axis) of a vector wave without sources of waves ...

  6. Classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism

    Based on the properties of the cross product, this produces a vector that is perpendicular to both the velocity and magnetic field vectors. The other vector is in the same direction as the electric field. The sum of these two vectors is the Lorentz force.

  7. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    Second quantization starts with an expansion of a scalar or vector field (or wave functions) in a basis consisting of a complete set of functions. These expansion functions depend on the coordinates of a single particle.

  8. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    vector Current density: J →: Electric current per unit cross-section area A/m 2: L −2 I: conserved, intensive, vector Electric dipole moment: p: Measure of the separation of equal and opposite electric charges C⋅m L T I: vector Electric displacement field: D →: Strength of the electric displacement C/m 2: L −2 T I: vector field ...

  9. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    for virtually any well-behaved function g of dimensionless argument φ, where ω is the angular frequency (in radians per second), and k = (k x, k y, k z) is the wave vector (in radians per meter). Although the function g can be and often is a monochromatic sine wave , it does not have to be sinusoidal, or even periodic.