Search results
Results from the WOW.Com Content Network
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
In the general case a conservation equation can be also a system of this kind of equations (a vector equation) in the form: [10]: 43 + = where y is called the conserved (vector) quantity, ∇y is its gradient, 0 is the zero vector, and A(y) is called the Jacobian of the current density. In fact as in the former scalar case, also in the vector ...
vector Current density: J →: Electric current per unit cross-section area A/m 2: L −2 I: conserved, intensive, vector Electric dipole moment: p: Measure of the separation of equal and opposite electric charges C⋅m L T I: vector Electric displacement field: D →: Strength of the electric displacement C/m 2: L −2 T I: vector field ...
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
The field multivector, known as the Riemann–Silberstein vector, is = + = +, and the four-current multivector is = using an orthonormal basis {}. Similarly, the unit pseudoscalar is I = σ 1 σ 2 σ 3 {\displaystyle I=\sigma _{1}\sigma _{2}\sigma _{3}} , due to the fact that the basis used is orthonormal.
Based on the properties of the cross product, this produces a vector that is perpendicular to both the velocity and magnetic field vectors. The other vector is in the same direction as the electric field. The sum of these two vectors is the Lorentz force.
The vector ′ is a unit vector pointing from the observer to the charge and ′ is the distance between observer and charge. Since the electromagnetic field propagates at the speed of light, both these quantities are evaluated at the retarded time t − r ′ / c {\displaystyle t-r'/c} .
In special and general relativity, the four-current (technically the four-current density) [1] is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than separating time from three ...