enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix of any orthonormal basis is the identity matrix. Equivalently, the Gram matrix of the rows or the columns of a real rotation matrix is the identity matrix. Likewise, the Gram matrix of the rows or columns of a unitary matrix is the identity matrix. The rank of the Gram matrix of vectors in or equals the dimension of the space ...

  3. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    The Gram matrix of a sequence of points ,, …, in k-dimensional space ℝ k is the n×n matrix = of their dot products (here a point is thought of as a vector from 0 to that point):

  4. Scatter matrix - Wikipedia

    en.wikipedia.org/wiki/Scatter_matrix

    The scatter matrix is the m-by-m positive semi-definite matrix = ... Gram matrix; References This page was last edited on 15 January 2024, at 16:30 (UTC). Text ...

  5. Hadamard's maximal determinant problem - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_maximal...

    The matrix G is the usual Gram matrix of a set of vectors, derived from the set of rows of R, while G′ is the Gram matrix derived from the set of columns of R. A matrix R for which G = G′ is a normal matrix. Every known maximal-determinant matrix is equivalent to a normal matrix, but it is not known whether this is always the case.

  6. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    Since L and M commute, the matrix L + M is nilpotent and I + (L + M)/2 is invertible with inverse given by a Neumann series. Hence L = M. If A is a matrix with positive eigenvalues and minimal polynomial p(t), then the Jordan decomposition into generalized eigenspaces of A can be deduced from the partial fraction expansion of p(t) −1.

  7. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

  8. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  9. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...