Search results
Results from the WOW.Com Content Network
The Gram matrix of any orthonormal basis is the identity matrix. Equivalently, the Gram matrix of the rows or the columns of a real rotation matrix is the identity matrix. Likewise, the Gram matrix of the rows or columns of a unitary matrix is the identity matrix. The rank of the Gram matrix of vectors in or equals the dimension of the space ...
The Gram matrix of a sequence of points ,, …, in k-dimensional space ℝ k is the n×n matrix = of their dot products (here a point is thought of as a vector from 0 to that point):
The scatter matrix is the m-by-m positive semi-definite matrix = ... Gram matrix; References This page was last edited on 15 January 2024, at 16:30 (UTC). Text ...
The matrix G is the usual Gram matrix of a set of vectors, derived from the set of rows of R, while G′ is the Gram matrix derived from the set of columns of R. A matrix R for which G = G′ is a normal matrix. Every known maximal-determinant matrix is equivalent to a normal matrix, but it is not known whether this is always the case.
Since L and M commute, the matrix L + M is nilpotent and I + (L + M)/2 is invertible with inverse given by a Neumann series. Hence L = M. If A is a matrix with positive eigenvalues and minimal polynomial p(t), then the Jordan decomposition into generalized eigenspaces of A can be deduced from the partial fraction expansion of p(t) −1.
The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...