Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
An electromagnetic pump is a pump that moves liquid metal, molten salt, brine, or other electrically conductive liquid using electromagnetism. A magnetic field is set at right angles to the direction the liquid moves in, and a current is passed through it. This causes an electromagnetic force that moves the liquid.
According to ISO 764 or its equivalent DIN 8309 (Deutsches Institut für Normung - German Institute for Standardization) a watch must resist exposure to a direct current magnetic field of 4800 A/m. The watch must keep its accuracy to ±30 seconds/day as measured before the test in order to be acknowledged as a magnetic-resistant watch.
The compression ratio of the micropump as one of the critical performance indicator is defined as the ratio between the stroke volume, i.e. fluid volume displaced by the pump membrane over the course of the pump cycle, and the dead volume, i.e. the minimum fluid volume remaining in the pump chamber in pumping mode. [15]
A stochastic pump is a classical stochastic system that responds with nonzero, on average, currents to periodic changes of parameters. The stochastic pump effect can be interpreted in terms of a geometric phase in evolution of the moment generating function of stochastic currents.
A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.
Although metering pumps can pump water, they are often used to pump chemicals, solutions, or other liquids. Many metering pumps are rated to be able to pump into a high discharge pressure. They are typically made to meter at flow rates which are practically constant (when averaged over time) within a wide range of discharge (outlet) pressure.
Thus in order to compute the linking number of the diagram corresponding to v it suffices to count the signed number of times the Gauss map covers v. Since v is a regular value, this is precisely the degree of the Gauss map (i.e. the signed number of times that the image of Γ covers the sphere). Isotopy invariance of the linking number is ...