Search results
Results from the WOW.Com Content Network
For example, by proceeding beyond the first delimiting saddle point a "grey-level blob tree" can be constructed. Moreover, the grey-level blob detection method was embedded in a scale space representation and performed at all levels of scale, resulting in a representation called the scale-space primal sketch.
The name ferrofluid was introduced, the process improved, more highly magnetic liquids synthesized, additional carrier liquids discovered, and the physical chemistry elucidated by R. E. Rosensweig and colleagues. In addition Rosensweig evolved a new branch of fluid mechanics termed ferrohydrodynamics which sparked further theoretical research ...
A spur or track in radiation chemistry is a region of high concentration of chemical products after ionizing radiation passes through. The spur model, proposed by Samuel and Magee in 1953, describes the kinetic behavior of reaction spurs involving one type of radicals in a diffusion-driven environment. [1]
Animation of a Lyman-alpha blob. The giant Lyman-alpha blob LAB-1 (left) and an artist's impression of what it might look like if viewed from relatively close (right). In astronomy, a Lyman-alpha blob (LAB) is a huge concentration of a gas emitting the Lyman-alpha emission line. LABs are some of the largest known individual objects in the Universe.
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...
[18]: 1165 Examples of this include the octacyanomolybdate (Mo(CN) 4− 8) and octafluorozirconate (ZrF 4− 8) anions. [18]: 1165 The nonahydridorhenate ion (ReH 2− 9) in potassium nonahydridorhenate is a rare example of a compound with a steric number of 9, which has a tricapped trigonal prismatic geometry. [13]: 254 [18]
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.
For the 'small rings' (3- and 4- membered), the slow rates is a consequence of angle strain experienced at the transition state. Although three-membered rings are more strained, formation of aziridine is faster than formation of azetidine due to the proximity of the leaving group and nucleophile in the former, which increases the probability that they would meet in a reactive conformation.