Search results
Results from the WOW.Com Content Network
Nonterminal symbols are those symbols that can be replaced. They may also be called simply syntactic variables . A formal grammar includes a start symbol , a designated member of the set of nonterminals from which all the strings in the language may be derived by successive applications of the production rules.
In mathematics, more precisely in measure theory, an atom is a measurable set that has positive measure and contains no set of smaller positive measures. A measure that has no atoms is called non-atomic or atomless .
An atomic formula or atom is simply a predicate applied to a tuple of terms; that is, an atomic formula is a formula of the form P (t 1,…, t n) for P a predicate, and the t n terms. All other well-formed formulae are obtained by composing atoms with logical connectives and quantifiers. For example, the formula ∀x. P (x) ∧ ∃y. Q (y, f (x ...
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
definition: is defined as metalanguage:= means "from now on, is defined to be another name for ." This is a statement in the metalanguage, not the object language. The notation may occasionally be seen in physics, meaning the same as :=.
The ordered field of real algebraic numbers is the unique atomic model of the theory of real closed fields.; Any finite model is atomic. A dense linear ordering without endpoints is atomic.
In the mathematical field of order theory, an element a of a partially ordered set with least element 0 is an atom if 0 < a and there is no x such that 0 < x < a. Equivalently, one may define an atom to be an element that is minimal among the non-zero elements, or alternatively an element that covers the least element 0 .