Search results
Results from the WOW.Com Content Network
Visualisation of binomial expansion up to the 4th power In mathematics , the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem . Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written ( n k ) . {\displaystyle {\tbinom {n}{k}}.}
The case α = 1 gives the series 1 + x + x 2 + x 3 + ..., where the coefficient of each term of the series is simply 1. The case α = 2 gives the series 1 + 2x + 3x 2 + 4x 3 + ..., which has the counting numbers as coefficients. The case α = 3 gives the series 1 + 3x + 6x 2 + 10x 3 + ..., which has the triangle numbers as coefficients.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
In a 1940 article on modular fields, Saunders Mac Lane quotes Stephen Kleene's remark that a knowledge of (a + b) 2 = a 2 + b 2 in a field of characteristic 2 would corrupt freshman students of algebra. This may be the first connection between "freshman" and binomial expansion in fields of positive characteristic. [6]
To compute the largest power of 2 dividing the binomial coefficient () write m = 3 and n − m = 7 in base p = 2 as 3 = 11 2 and 7 = 111 2.Carrying out the addition 11 2 + 111 2 = 1010 2 in base 2 requires three carries:
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
Thus many identities on binomial coefficients carry over to the falling and rising factorials. The rising and falling factorials are well defined in any unital ring , and therefore x {\displaystyle x} can be taken to be, for example, a complex number , including negative integers, or a polynomial with complex coefficients, or any complex-valued ...
Lucas's theorem can be generalized to give an expression for the remainder when () is divided by a prime power p k.However, the formulas become more complicated. If the modulo is the square of a prime p, the following congruence relation holds for all 0 ≤ s ≤ r ≤ p − 1, a ≥ 0, and b ≥ 0.