Search results
Results from the WOW.Com Content Network
Water moving downward through the relatively porous material leaches out basic elements (e.g., calcium), and acidic conditions develop. Soluble organic substances formed by decomposition of the forest litter attack soil minerals in surface horizons, and much of the iron and aluminum released combines with this organic material.
Soil particles can be classified by their chemical composition as well as their size. The particle size distribution of a soil, its texture, determines many of the properties of that soil, in particular hydraulic conductivity and water potential, [1] but the mineralogy of those particles can strongly modify those properties. The mineralogy of ...
A permanganate can oxidize an amine to a nitro compound, [7] [8] an alcohol to a ketone, [9] an aldehyde to a carboxylic acid, [10] [11] a terminal alkene to a carboxylic acid, [12] oxalic acid to carbon dioxide, [13] and an alkene to a diol. [14] This list is not exhaustive. In alkene oxidations one intermediate is a cyclic Mn(V) species: [15]
Aluminum is one of the few elements capable of making soil more acidic. [22] This is achieved by aluminum taking hydroxide ions out of water, leaving hydrogen ions behind. [23] As a result, the soil is more acidic, which makes it unlivable for many plants. Another consequence of aluminum in soils is aluminum toxicity, which inhibits root growth ...
Hydrolysis is the transformation of minerals into polar molecules by the splitting of intervening water. This results in soluble acid-base pairs. For example, the hydrolysis of orthoclase-feldspar transforms it to acid silicate clay and basic potassium hydroxide, both of which are more soluble. [31]
Potassium permanganate is a commonly used laboratory reagent because of its oxidizing properties; it is used as a topical medicine (for example, in the treatment of fish diseases). Solutions of potassium permanganate were among the first stains and fixatives to be used in the preparation of biological cells and tissues for electron microscopy. [28]
It is of use in calculating the amount of lime needed to neutralise an acid soil (lime requirement). The amount of lime needed to neutralize a soil must take account of the amount of acid forming ions on the colloids (exchangeable acidity), not just those in the soil water solution (free acidity). [131]
2) that combines with water to form carbonic acid (H 2 CO 3). When this water flows through the soil it results in the leaching of basic cations as bicarbonates; this increases the percentage of Al 3+ and H + relative to other cations. [12] Root respiration and decomposition of organic matter by microorganisms release CO 2 which increases the ...