enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    If the speed of the vehicle decreases, this is an acceleration in the opposite direction of the velocity vector (mathematically a negative, if the movement is unidimensional and the velocity is positive), sometimes called deceleration [4] [5] or retardation, and passengers experience the reaction to deceleration as an inertial force pushing ...

  3. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    In this case, the three-acceleration vector is perpendicular to the three-velocity vector, = and the square of proper acceleration, expressed as a scalar invariant, the same in all reference frames, = + (), becomes the expression for circular motion, =. or, taking the positive square root and using the three-acceleration, we arrive at the ...

  4. Proportionality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Proportionality_(mathematics)

    It is also called the constant of variation or constant of proportionality. Given such a constant k , the proportionality relation ∝ with proportionality constant k between two sets A and B is the equivalence relation defined by { ( a , b ) ∈ A × B : a = k b } . {\displaystyle \{(a,b)\in A\times B:a=kb\}.}

  5. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    Traveler spacetime for a constant-acceleration roundtrip. In relativity theory, proper acceleration [1] is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured.

  6. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    While acceleration is a vector quantity, g-force accelerations ("g-forces" for short) are often expressed as a scalar, based on the vector magnitude, with positive g-forces pointing downward (indicating upward acceleration), and negative g-forces pointing upward. Thus, a g-force is a vector of acceleration.

  7. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    The Atwood machine (or Atwood's machine) was invented in 1784 by the English mathematician George Atwood as a laboratory experiment to verify the mechanical laws of motion with constant acceleration. Atwood's machine is a common classroom demonstration used to illustrate principles of classical mechanics .

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The formula for the acceleration A P can now be obtained as: = ˙ + + (), or = / + / +, where α is the angular acceleration vector obtained from the derivative of the angular velocity vector; / =, is the relative position vector (the position of P relative to the origin O of the moving frame M); and = ¨ is the acceleration of the origin of ...