Search results
Results from the WOW.Com Content Network
Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.
An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]
The method of conditional probabilities replaces the random root-to-leaf walk in the random experiment by a deterministic root-to-leaf walk, where each step is chosen to inductively maintain the following invariant: the conditional probability of failure, given the current state, is less than 1.
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.
The median trick is a generic approach that increases the chances of a probabilistic algorithm to succeed. [1] Apparently first used in 1986 [ 2 ] by Jerrum et al. [ 3 ] for approximate counting algorithms , the technique was later applied to a broad selection of classification and regression problems.
For example, in object recognition, is likely to be a vector of raw pixels (or features extracted from the raw pixels of the image). Within a probabilistic framework, this is done by modeling the conditional probability distribution P ( y | x ) {\displaystyle P(y|x)} , which can be used for predicting y {\displaystyle y} from x {\displaystyle x} .
The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.
The problem is named after its historical application by Allied forces in World War II to the estimation of the monthly rate of German tank production from very limited data. This exploited the manufacturing practice of assigning and attaching ascending sequences of serial numbers to tank components (chassis, gearbox, engine, wheels), with some ...