Search results
Results from the WOW.Com Content Network
Earth's gravity measured by NASA GRACE mission, showing deviations from the theoretical gravity of an idealized, smooth Earth, the so-called Earth ellipsoid. Red shows the areas where gravity is stronger than the smooth, standard value, and blue reveals areas where gravity is weaker (Animated version). [1]
Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2. The value of the g n is defined as approximately equal to the acceleration due to gravity at the Earth's surface, although the actual acceleration varies slightly ...
The value of ɡ 0 defined above is a nominal midrange value on Earth, originally based on the acceleration of a body in free fall at sea level at a geodetic latitude of 45°. Although the actual acceleration of free fall on Earth varies according to location, the above standard figure is always used for metrological purposes.
[2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...
The General Conference on Weights and Measures fixed the value of standard gravity at precisely 9.80665 m/s 2 so that disciplines such as metrology would have a standard value for converting units of defined mass into defined forces and pressures. Thus the kilogram-force is defined as precisely 9.80665 newtons.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The measured value of the constant is known with some certainty to four significant digits. In SI units, its value is approximately 6.6743 × 10 −11 m 3 kg −1 s −2. [1] The modern notation of Newton's law involving G was introduced in the 1890s by C. V. Boys.
The kilogram-force is a non-SI unit of force, defined as the force exerted by a one-kilogram mass in standard Earth gravity (equal to 9.80665 newtons exactly). The dyne is the cgs unit of force and is not a part of SI, while weights measured in the cgs unit of mass, the gram, remain a part of SI.