Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
In addition to this, general relativity gives us gravitational time dilation. Briefly, a clock in a stronger gravitational field (e.g. closer to a planet) will appear to tick more slowly. People holding these clocks (i.e. those inside and outside the stronger field) would all agree on which clocks appear to be going faster.
More generally, processes close to a massive body run more slowly when compared with processes taking place farther away; this effect is known as gravitational time dilation. [64] Gravitational redshift has been measured in the laboratory [65] and using astronomical observations. [66] Gravitational time dilation in the Earth's gravitational ...
This gravitational frequency shift corresponds to a gravitational time dilation: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers the lower they are in a gravitational field.
In 2010, Chou et al. performed tests in which both gravitational and velocity effects were measured at velocities and gravitational potentials much smaller than those used in the mountain-valley experiments of the 1970s. It was possible to confirm velocity time dilation at the 10 −16 level at speeds below 36 km/h. Also, gravitational time ...
In a nearly static gravitational field of moderate strength (say, of stars and planets, but not one of a black hole or close binary system of neutron stars) the effect may be considered as a special case of gravitational time dilation. The measured elapsed time of a light signal in a gravitational field is longer than it would be without the ...
According to general relativity, in its weak-field and low-velocity linearized approximation, a slowly spinning body induces an additional component of the gravitational field that acts on a freely-falling test particle with a non-central, gravitomagnetic Lorentz-like force.
In particular, the direction of motion with respect to the sense of rotation of the central body is relevant because co-and counter-propagating waves carry a "gravitomagnetic" time delay Δt GM which could be, in principle, be measured [2] [3] if S is known.