Search results
Results from the WOW.Com Content Network
The F 2 layer exists from about 220 to 800 km (140 to 500 miles) above the surface of the Earth. The F 2 layer is the principal reflecting layer for HF radio communications during both day and night. The horizon-limited distance for one-hop F 2 propagation is usually around 4,000 km (2,500 miles). The F 2 layer has about 10 6 e/cm 3. However ...
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
The ionosphere is a region of the upper atmosphere, from about 80 km (50 miles) to 1000 km (600 miles) in altitude, where neutral air is ionized by solar photons, solar particles, and cosmic rays. When high-frequency signals enter the ionosphere at a low angle they are bent back towards the Earth by the ionized layer. [1]
The Drake is part of the most voluminous ocean current in the world, with up to 5,300 million cubic feet flowing per second. Squeezed into the narrow passage, the current increases, traveling west ...
The upper part of the heterosphere is composed almost completely of hydrogen, the lightest element. [29] The planetary boundary layer is the part of the troposphere that is closest to Earth's surface and is directly affected by it, mainly through turbulent diffusion. During the day the planetary boundary layer usually is well-mixed, whereas at ...
Here R is the mean Earth radius, H is the mean height of the ionosphere shell. The IPP or Ionospheric Pierce Point is the altitude in the ionosphere where electron density is greatest. [1] These points can change based on factors like time of day, solar activity, and geographical location, which all influence ionospheric conditions. [2]
SpaceX’s rocket explosion in November 2023 created a massive hole in the Earth's ionosphere, providing scientists with a rare opportunity to study its effects.
The Earth–ionosphere waveguide [1] is the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves as a large waveguide.