Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
For algorithms describing how to calculate the remainder, see Division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder . [ 2 ] The integer a is either a multiple of d , or lies in the interval between consecutive multiples of d , namely, q ⋅ d and ( q + 1) d (for positive q ).
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
To maximise computation speed, an intermediate remainder can be calculated by first computing the CRC of the message modulo a sparse polynomial which is a multiple of the CRC polynomial. For CRC-32, the polynomial x 123 + x 111 + x 92 + x 84 + x 64 + x 46 + x 23 + 1 has the property that its terms (feedback taps) are at least 8 positions apart.
Divide the highest term of the remainder by the highest term of the divisor (x 2 ÷ x = x). Place the result (+x) below the bar. x 2 has been divided leaving no remainder, and can therefore be marked as used. The result x is then multiplied by the second term in the divisor −3 = −3x. Determine the partial remainder by subtracting 0x − ...