Search results
Results from the WOW.Com Content Network
Earth's gravity measured by NASA GRACE mission, showing deviations from the theoretical gravity of an idealized, smooth Earth, the so-called Earth ellipsoid. Red shows the areas where gravity is stronger than the smooth, standard value, and blue reveals areas where gravity is weaker (Animated version). [1]
The value of ɡ 0 defined above is a nominal midrange value on Earth, originally based on the acceleration of a body in free fall at sea level at a geodetic latitude of 45°. Although the actual acceleration of free fall on Earth varies according to location, the above standard figure is always used for metrological purposes.
[2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...
The measured value of the constant is known with some certainty to four significant digits. In SI units, its value is approximately 6.6743 × 10 −11 m 3 kg −1 s −2. [1] The modern notation of Newton's law involving G was introduced in the 1890s by C. V. Boys.
The force of gravity is weakest at the equator because of the centrifugal force caused by the Earth's rotation and because points on the equator are farthest from the center of the Earth. The force of gravity varies with latitude, and the resultant acceleration increases from about 9.780 m/s 2 at the Equator to about 9.832 m/s 2 at the poles ...
One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass.
All objects on the Earth's surface are subject to a gravitational acceleration of approximately 9.8 m/s 2. The General Conference on Weights and Measures fixed the value of standard gravity at precisely 9.80665 m/s 2 so that disciplines such as metrology would have a standard value for converting units of defined mass into defined forces and ...
Thus, the Earth's gravitational field (near ground level) can be quoted as 9.8 metres per second squared, or the equivalent 9.8 N/kg. Acceleration can be measured in ratios to gravity, such as g-force , and peak ground acceleration in earthquakes.