Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
The Luhn algorithm or Luhn formula, also known as the "modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers.
The gcd(4, 10) = 2 and 2 does not divide 5, but does divide 6. Since gcd(3, 10) = 1, the linear congruence 3x ≡ 1 (mod 10) will have solutions, that is, modular multiplicative inverses of 3 modulo 10 will exist. In fact, 7 satisfies this congruence (i.e., 21 − 1 = 20).
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...
In modular arithmetic, the integers coprime (relatively prime) to n from the set {,, …,} of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n.