Search results
Results from the WOW.Com Content Network
All refracting telescopes use the same principles. The combination of an objective lens 1 and some type of eyepiece 2 is used to gather more light than the human eye is able to collect on its own, focus it 5, and present the viewer with a brighter, clearer, and magnified virtual image 6. The objective in a refracting telescope refracts or bends ...
The first of these was the Hamiltonian telescope patented by W. F. Hamilton in 1814. The Schupmann medial telescope designed by German optician Ludwig Schupmann near the end of the 19th century placed the catadioptric mirror beyond the focus of the refractor primary and added a third correcting/focusing lens to the system.
Primary lens: The objective of a refracting telescope. Primary mirror: The objective of a reflecting telescope. Corrector plate: A full aperture negative lens placed before a primary mirror designed to correct the optical aberrations of the mirror. Schmidt corrector plate: An aspheric-shaped corrector plate used in the Schmidt telescope.
Galilean type Soviet-made miniature 2.5 × 17.5 monocular Diagram of a monocular using a Schmidt-Pechan prism: 1 – Objective lens 2 – Schmidt-Pechan prism 3 – Eyepiece. A monocular is a compact refracting telescope used to magnify images of distant objects, typically using an optical prism to ensure an erect image, instead of using relay lenses like most telescopic sights.
The telescope is more a discovery of optical craftsmen than an invention of a scientist. [1] [2] The lens and the properties of refracting and reflecting light had been known since antiquity, and theory on how they worked was developed by ancient Greek philosophers, preserved and expanded on in the medieval Islamic world, and had reached a significantly advanced state by the time of the ...
Light path in a Cassegrain reflecting telescope. The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture.
Optical telescopes can be classified by three primary optical designs (refractor, reflector, or catadioptric), by sub-designs of these types, by how they are constructed, or by the task they perform. They all have their different advantages and disadvantages and they are used in different areas of professional and amateur astronomy .
People demonstrating a Schmidt–Cassegrain telescope at a sidewalk gathering. The Schmidt–Cassegrain design is very popular with consumer telescope manufacturers because it combines easy-to-manufacture spherical optical surfaces to create an instrument with the long focal length of a refracting telescope with the lower cost per aperture of a reflecting telescope.