enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of two cubes - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_cubes

    A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [5] expressed as: + or

  3. Sums of three cubes - Wikipedia

    en.wikipedia.org/wiki/Sums_of_three_cubes

    Sum of four cubes problem, whether every integer is a sum of four cubes; Euler's sum of powers conjecture § k = 3, relating to cubes that can be written as a sum of three positive cubes; Plato's number, an ancient text possibly discussing the equation 3 3 + 4 3 + 5 3 = 6 3; Taxicab number, the smallest integer that can be expressed as a sum of ...

  4. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta(2) = 1 3 + 12 3 = 9 3 + 10 3, also known as the Hardy-Ramanujan number. [2] [3]

  5. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    y = x 3 for values of 1 ≤ x ≤ 25.. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8.

  6. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas can equivalently be written as < < < (=) = for k = 1, 2, ..., n (the indices i k are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the elementary symmetric polynomials of the roots.

  7. Sum of four cubes problem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_four_cubes_problem

    The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.

  8. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  9. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    The same applies for sums of distinct cubes (largest one is 12,758), distinct fourth powers (largest is 5,134,240), etc. See [1] for a generalization to sums of polynomials. Faulhaber's formula expresses + + + + as a polynomial in n, or alternatively in terms of a Bernoulli polynomial.