Search results
Results from the WOW.Com Content Network
Average yearly temperature is 22.4 °C, ranging from an average minimum of 12.2 °C to a maximum of 29.9 °C. The average temperature range is 11.4 °C. [6] Variability throughout the year is small (standard deviation of 2.31 °C for the maximum monthly average and 4.11 °C for the minimum). The graph also shows the typical phenomenon of ...
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
To accommodate the lowest points on Earth, the model starts at a base geopotential altitude of 610 meters (2,000 ft) below sea level, with standard temperature set at 19 °C. With a temperature lapse rate of −6.5 °C (-11.7 °F) per km (roughly −2 °C (-3.6 °F) per 1,000 ft), the table interpolates to the standard mean sea level values of ...
The air is compressed and experiences an adiabatic increase in temperature. Therefore, total air temperature is higher than the static (or ambient) air temperature. Total air temperature is an essential input to an air data computer in order to enable the computation of static air temperature and hence true airspeed.
A reference atmospheric model describes how the ideal gas properties (namely: pressure, temperature, density, and molecular weight) of an atmosphere change, primarily as a function of altitude, and sometimes also as a function of latitude, day of year, etc. A static atmospheric model has a more limited domain, excluding time.
For example, a temperature deviation of +8 °C means that the air at any given altitude is 8 °C (14 °F) warmer than what standard day conditions and the measurement altitude would predict, and would indicate a higher density altitude. These variations are extremely important to both meteorologists and aviators, as they strongly determine the ...
T = mean atmospheric temperature in kelvins = 250 K [4] for Earth m = mean mass of a molecule M = mean molar mass of atmospheric particles = 0.029 kg/mol for Earth g = acceleration due to gravity at the current location. The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere.
A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature spatial gradient is a vector quantity with dimension of temperature difference per unit length. The SI unit is kelvin per meter (K/m).