enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivation of the conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    In numerical linear algebra, the conjugate gradient method is an iterative method for numerically solving the linear system = where is symmetric positive-definite, without computing explicitly.

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  4. Jahn–Teller effect - Wikipedia

    en.wikipedia.org/wiki/Jahn–Teller_effect

    The Jahn–Teller effect (JT effect or JTE) is an important mechanism of spontaneous symmetry breaking in molecular and solid-state systems which has far-reaching consequences in different fields, and is responsible for a variety of phenomena in spectroscopy, stereochemistry, crystal chemistry, molecular and solid-state physics, and materials science.

  5. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of det {\displaystyle \det } , evaluated at the identity matrix, is equal to the trace. The differential det ′ ( I ) {\displaystyle \det '(I)} is a linear operator that maps an n × n matrix to a real number.

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  7. Differential operator - Wikipedia

    en.wikipedia.org/wiki/Differential_operator

    If R is a ring, let , be the non-commutative polynomial ring over R in the variables D and X, and I the two-sided ideal generated by DX − XD − 1. Then the ring of univariate polynomial differential operators over R is the quotient ring R D , X / I {\displaystyle R\langle D,X\rangle /I} .

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Horologium Oscillatorium - Wikipedia

    en.wikipedia.org/wiki/Horologium_Oscillatorium

    Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae (English: The Pendulum Clock: or Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks) is a book published by Dutch mathematician and physicist Christiaan Huygens in 1673 and his major work on pendula and horology.