enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrogen ion - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_ion

    A hydrogen ion is created when a hydrogen atom loses an electron. A positively charged hydrogen ion (or proton ) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. [ 1 ]

  3. Spectroscopic notation - Wikipedia

    en.wikipedia.org/wiki/Spectroscopic_notation

    This notation is used to specify electron configurations and to create the term symbol for the electron states in a multi-electron atom. When writing a term symbol, the above scheme for a single electron's orbital quantum number is applied to the total orbital angular momentum associated to an electron state. [4]

  4. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    In each term of an electron configuration, n is the positive integer that precedes each orbital letter (helium's electron configuration is 1s 2, therefore n = 1, and the orbital contains two electrons). An atom's nth electron shell can accommodate 2n 2 electrons. For example, the first shell can accommodate two electrons, the second shell eight ...

  5. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    In hydrogen, there is only one electron, which must go in the lowest-energy orbital 1s. This electron configuration is written 1s 1, where the superscript indicates the number of electrons in the subshell. Helium adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s 2. [39] [58] [i]

  6. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    An electron state has spin number s = ⁠ 1 / 2 ⁠, consequently m s will be + ⁠ 1 / 2 ⁠ ("spin up") or - ⁠ 1 / 2 ⁠ "spin down" states. Since electron are fermions they obey the Pauli exclusion principle: each electron state must have different quantum numbers. Therefore, every orbital will be occupied with at most two electrons, one ...

  7. Periodic table (electron configurations) - Wikipedia

    en.wikipedia.org/wiki/Periodic_table_(electron...

    Configurations of elements 109 and above are not available. Predictions from reliable sources have been used for these elements. Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2

  8. Term symbol - Wikipedia

    en.wikipedia.org/wiki/Term_symbol

    n′ℓ is an attempt to describe electronic configuration of the excited electron in a way of describing electronic configuration of hydrogen atom. # is an additional number denoted to each energy level of given n′ℓ (there can be multiple energy levels of given electronic configuration, denoted by the term symbol).

  9. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    In chemistry, the term proton refers to the hydrogen ion, H +. Since the atomic number of hydrogen is 1, a hydrogen ion has no electrons and corresponds to a bare nucleus, consisting of a proton (and 0 neutrons for the most abundant isotope protium 1 1 H). The proton is a "bare charge" with only about 1/64,000 of the radius of a hydrogen atom ...