enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  3. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}

  4. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".

  5. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  6. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative, 1 1 − z 2 {\textstyle {\tfrac {1}{\sqrt {1-z^{2}}}}} , as a binomial series , and integrating term by term (using the integral definition as ...

  7. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    In mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x.

  8. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    Addition is commutative, meaning that one can change the order of the terms in a sum, but still get the same result. Symbolically, if a and b are any two numbers, then a + b = b + a. The fact that addition is commutative is known as the "commutative law of addition" or "commutative property of addition".

  9. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    If each subtraction is replaced with addition of the opposite (additive inverse), then the associative and commutative laws of addition allow terms to be added in any order. The radical symbol ⁠ t {\displaystyle {\sqrt {\vphantom {t}}}} ⁠ is traditionally extended by a bar (called vinculum ) over the radicand (this avoids the need for ...