Search results
Results from the WOW.Com Content Network
The multitaper method overcomes some of the limitations of non-parametric Fourier analysis. When applying the Fourier transform to extract spectral information from a signal, we assume that each Fourier coefficient is a reliable representation of the amplitude and relative phase of the corresponding component frequency. This assumption, however ...
The equation of a 1-D Gabor wavelet is a Gaussian modulated by a complex exponential, described as follows: [3] = / ()As opposed to other functions commonly used as bases in Fourier Transforms such as and , Gabor wavelets have the property that they are localized, meaning that as the distance from the center increases, the value of the function becomes exponentially suppressed.
The direct calculation of the constant-Q transform (either using naive discrete Fourier transform or slightly faster Goertzel algorithm) is slow when compared against the fast Fourier transform. However, the fast Fourier transform can itself be employed, in conjunction with the use of a kernel , to perform the equivalent calculation but much ...
The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform.It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time.
The conversion from continuous time to samples (discrete-time) changes the underlying Fourier transform of x(t) into a discrete-time Fourier transform (DTFT), which generally entails a type of distortion called aliasing. Choice of an appropriate sample-rate (see Nyquist rate) is the key to minimizing that distortion.
A simple example is that the 4-fold periodicity of the Fourier transform – and the fact that two-fold Fourier transform reverses direction – can be interpreted by considering the Fourier transform as a 90° rotation in the associated time–frequency plane: 4 such rotations yield the identity, and 2 such rotations simply reverse direction ...
The Goertzel algorithm is a technique in digital signal processing (DSP) for efficient evaluation of the individual terms of the discrete Fourier transform (DFT). It is useful in certain practical applications, such as recognition of dual-tone multi-frequency signaling (DTMF) tones produced by the push buttons of the keypad of a traditional analog telephone.
The Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum.Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles of the non-zero values of S(f).