Search results
Results from the WOW.Com Content Network
The Fastest Fourier Transform in the West (FFTW) is a software library for computing discrete Fourier transforms (DFTs) developed by Matteo Frigo and Steven G. Johnson at the Massachusetts Institute of Technology. [2] [3] [4] FFTW is one of the fastest free software implementations of the fast Fourier transform (FFT).
The multitaper method overcomes some of the limitations of non-parametric Fourier analysis. When applying the Fourier transform to extract spectral information from a signal, we assume that each Fourier coefficient is a reliable representation of the amplitude and relative phase of the corresponding component frequency. This assumption, however ...
The pseudocode below performs the GS algorithm to obtain a phase distribution for the plane "Source", such that its Fourier transform would have the amplitude distribution of the plane "Target". The Gerchberg-Saxton algorithm is one of the most prevalent methods used to create computer-generated holograms .
The Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum.Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles of the non-zero values of S(f).
An example FFT algorithm structure, using a decomposition into half-size FFTs A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz. A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).
The direct calculation of the constant-Q transform (either using naive discrete Fourier transform or slightly faster Goertzel algorithm) is slow when compared against the fast Fourier transform. However, the fast Fourier transform can itself be employed, in conjunction with the use of a kernel , to perform the equivalent calculation but much ...
The prime-factor algorithm (PFA), also called the Good–Thomas algorithm (1958/1963), is a fast Fourier transform (FFT) algorithm that re-expresses the discrete Fourier transform (DFT) of a size N = N 1 N 2 as a two-dimensional N 1 ×N 2 DFT, but only for the case where N 1 and N 2 are relatively prime.
The Goertzel algorithm is a technique in digital signal processing (DSP) for efficient evaluation of the individual terms of the discrete Fourier transform (DFT). It is useful in certain practical applications, such as recognition of dual-tone multi-frequency signaling (DTMF) tones produced by the push buttons of the keypad of a traditional analog telephone.