Search results
Results from the WOW.Com Content Network
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
The 'log pot', that is, a potentiometer has a resistance, taper, or, "curve" (or law) of a logarithmic (log) form, is used as the volume control in audio power amplifiers, where it is also called an "audio taper pot", because the amplitude response of the human ear is approximately logarithmic. It ensures that on a volume control marked 0 to 10 ...
More generally, for a function of n variables (, …,), also called a scalar field, the gradient is the vector field: = (, …,) = + + where (=,,...,) are mutually orthogonal unit vectors. As the name implies, the gradient is proportional to, and points in the direction of, the function's most rapid (positive) change.
The principle of a potentiometer is that the potential dropped across a segment of a wire of uniform cross-section carrying a constant current is directly proportional to its length. The potentiometer is a simple device used to measure the electrical potentials (or compare the e.m.f of a cell).
where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential.
An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector .
In an interview with CNN Sport’s Amanda Davies, Real Madrid goalkeeper Thibaut Courtois looked to the NBA for a solution to soccer’s calendar controversy.
The gradient of the scalar potential (and hence also its opposite, as in the case of a vector field with an associated potential field) is everywhere perpendicular to the equipotential surface, and zero inside a three-dimensional equipotential region. Electrical conductors offer an intuitive example.