Search results
Results from the WOW.Com Content Network
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
Another example of point-of-care work involving a capillary pressure-related design component is the separation of plasma from whole blood by filtration through porous membrane. Efficient and high-volume separation of plasma from whole blood is often necessary for infectious disease diagnostics, like the HIV viral load test.
Cellular factors include reduced number and function of bone-marrow derived endothelial progenitor cells. [25] and reduced ability of those cells to form blood vessels. [26] Formation of additional capillaries and larger blood vessels (angiogenesis) is a major mechanism by which a cancer may help to enhance its own growth.
Various life forms found in nature exploit surface tension in different ways. Hu [8] and his colleagues looked at a few examples to create devices that mimic the abilities of their natural counterparts to walk on water, jump off the liquid interface, and climb menisci. Two such devices were a rendition of the water strider. Both devices ...
Capillary bridges also widely spread in living nature. Bugs, flies, grasshoppers and tree frogs are capable to adhere to vertical rough surfaces because of their ability to inject wetting liquid into the pad-substrate contact area. This way is created long range attractive interaction due to the formation of capillary bridges. [25]
Figure 1: An example of a porous structure exhibiting capillary condensation.. In materials science and biology, capillary condensation is the "process by which multilayer adsorption from the vapor [phase] into a porous medium proceeds to the point at which pore spaces become filled with condensed liquid from the vapor [phase]."
The investigations in capillarity stem back as far as Leonardo da Vinci, however the idea of capillary length was not developed until much later. Fundamentally the capillary length is a product of the work of Thomas Young and Pierre Laplace. They both appreciated that surface tension arose from cohesive forces between particles and that the ...
Elasto-capillarity is the ability of capillary force to deform an elastic material. From the viewpoint of mechanics , elastocapillarity phenomena essentially involve competition between the elastic strain energy in the bulk and the energy on the surfaces/interfaces.