Search results
Results from the WOW.Com Content Network
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. For a normal magic square of order n – that is, a magic square which contains the numbers 1, 2, ..., n 2 – the magic constant is = +.
For instance, the Lo Shu Square – the unique 3 × 3 magic square – is associative, because each pair of opposite points form a line of the square together with the center point, so the sum of the two opposite points equals the sum of a line minus the value of the center point regardless of which two opposite points are chosen. [4]
Because north is placed at the bottom of maps in China, the 3x3 magic square having number 1 at the bottom and 9 at the top is used in preference to the other rotations/reflections. As seen in the "Later Heaven" arrangement, 1 and 9 correspond with ☵ Kǎn 坎 "Water 水 " and ☲ Lí 離 "Fire 火 " respectively.
The Siamese method, or De la Loubère method, is a simple method to construct any size of n-odd magic squares (i.e. number squares in which the sums of all rows, columns and diagonals are identical). The method was brought to France in 1688 by the French mathematician and diplomat Simon de la Loubère , [ 1 ] as he was returning from his 1687 ...
Some of the more well-known topics in recreational mathematics are Rubik's Cubes, magic squares, fractals, logic puzzles and mathematical chess problems, but this area of mathematics includes the aesthetics and culture of mathematics, peculiar or amusing stories and coincidences about mathematics, and the personal lives of mathematicians.
I was combing the internet trying to find a method to make an arbitrary 3x3 magic square -- not a normalized one. Meaning the sum doesn't have to be 15. I remember in grade school there was a simple method they taught to do it, but I couldn't remember it. I worked out the trick, or a method. In a 3x3 magic square the center is always 1/3 of the ...
The fact that this square is a pandiagonal magic square can be verified by checking that all of its broken diagonals add up to the same constant: 3+12+14+5 = 34 10+1+7+16 = 34 10+13+7+4 = 34. One way to visualize a broken diagonal is to imagine a "ghost image" of the panmagic square adjacent to the original: