enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photoacoustic imaging - Wikipedia

    en.wikipedia.org/wiki/Photoacoustic_imaging

    Comparison of contrast mechanisms, penetration depth (Δz), axial resolution (δz), lateral resolution (δx=δy) and imaging speed of confocal microscopy, two-photon microscopy, optical coherence tomography (300 THz), ultrasound microscopy (50 MHz), ultrasound imaging (5 MHz), photoacoustic microscopy (50 MHz), and photoacoustic tomography (3.5 ...

  3. Photoacoustic microscopy - Wikipedia

    en.wikipedia.org/wiki/Photoacoustic_microscopy

    The axial resolution of the system can be improved by using a wider bandwidth ultrasound transducer as long as the bandwidth matches that of the photoacoustic signal. The lateral resolution of photoacoustic microscopy depends on the optical and acoustic foci of the system.

  4. Super-resolution photoacoustic imaging - Wikipedia

    en.wikipedia.org/wiki/Super-resolution_photo...

    This particular biomedical imaging modality is a combination of optical imaging, and ultrasound imaging. In other words, a photoacoustic (PA) image can be viewed as an ultrasound image in which its contrast depends on the optical properties, such as optical resolution of biomolecules like hemoglobin, water, melanin, lipids, and collagen.

  5. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    In fluorescence microscopy the excitation and emission are typically on different wavelengths. In total internal reflection fluorescence microscopy a thin portion of the sample located immediately on the cover glass is excited with an evanescent field, and recorded with a conventional diffraction-limited objective, improving the axial resolution.

  6. Medical imaging - Wikipedia

    en.wikipedia.org/wiki/Medical_imaging

    Ultrasound image showing the liver, gallbladder and common bile duct. Medical ultrasound uses high frequency broadband sound waves in the megahertz range that are reflected by tissue to varying degrees to produce (up to 3D) images. This is commonly associated with imaging the fetus in pregnant women. Uses of ultrasound are much broader, however.

  7. Acoustic microscopy - Wikipedia

    en.wikipedia.org/wiki/Acoustic_microscopy

    The notion of acoustic microscopy dates back to 1936 when S. Ya. Sokolov [1] proposed a device for producing magnified views of structure with 3-GHz sound waves. However, due to technological limitations at the time, no such instrument could be constructed, and it was not until 1959 that Dunn and Fry [2] performed the first acoustic microscopy experiments, though not at very high frequencies.

  8. Medical ultrasound - Wikipedia

    en.wikipedia.org/wiki/Medical_ultrasound

    Superficial structures such as muscle, tendon, testis, breast, thyroid and parathyroid glands, and the neonatal brain are imaged at higher frequencies (7–18 MHz), which provide better linear (axial) and horizontal (lateral) resolution. Deeper structures such as liver and kidney are imaged at lower frequencies (1–6 MHz) with lower axial and ...

  9. Multispectral optoacoustic tomography - Wikipedia

    en.wikipedia.org/wiki/Multispectral_optoacoustic...

    This choice of frequency band dictates whether the imaging will be in the macroscopic regime, involving resolution of 100-500 microns and penetration depth >10 mm, or mesoscopic range, involving resolution of 1-50 microns and penetration depth <10 mm. [1] [6] Microscopic resolution is also possible using multi-spectral optoacoustics.