Search results
Results from the WOW.Com Content Network
The thermodynamically stable form of CaCO 3 under normal conditions is hexagonal β-CaCO 3 (the mineral calcite). Other forms can be prepared, the denser (2.83 g/cm 3) orthorhombic λ-CaCO 3 (the mineral aragonite) and hexagonal μ-CaCO 3, occurring as the mineral vaterite. The aragonite form can be prepared by precipitation at temperatures ...
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
Carbonatation is a slow process that occurs in concrete where lime (CaO, or Ca(OH) 2 ) in the cement reacts with carbon dioxide (CO 2) from the air and forms calcium carbonate. The water in the pores of Portland cement concrete is normally alkaline with a pH in the range of 12.5 to 13.5.
It consists of one carbon atom surrounded by three oxygen atoms, in a trigonal planar arrangement, with D 3h molecular symmetry. It has a molecular mass of 60.01 g/mol and carries a total formal charge of −2. It is the conjugate base of the hydrogencarbonate (bicarbonate) [8] ion, HCO − 3, which is the conjugate base of H 2 CO 3, carbonic acid.
A Lewis base or electron-pair donor is a molecule with one or more high-energy lone pairs of electrons which can be shared with a low-energy vacant orbital in an acceptor molecule to form an adduct. In addition to H + , possible electron-pair acceptors (Lewis acids) include neutral molecules such as BF 3 and high oxidation state metal ions such ...
The essence of Brønsted–Lowry theory is that an acid is only such in relation to a base, and vice versa. Water is amphoteric as it can act as an acid or as a base. In the image shown at the right one molecule of H 2 O acts as a base and gains H + to become H 3 O + while the other acts as an acid and loses H + to become OH −.
In general, for an acid AH n at concentration c 1 reacting with a base B(OH) m at concentration c 2 the volumes are related by: n v 1 c 1 = m v 2 c 2. An example of a base being neutralized by an acid is as follows. Ba(OH) 2 + 2 H + → Ba 2+ + 2 H 2 O. The same equation relating the concentrations of acid and base applies.
The charge on the ion is +5 − 3 × 2 = −1, and so the formula is ClO − 3. The structure of the ion is predicted by VSEPR theory to be pyramidal, with three bonding electron pairs and one lone pair. In a similar way, The oxyanion of chlorine(III) has the formula ClO − 2, and is bent with two lone pairs and two bonding pairs.