Search results
Results from the WOW.Com Content Network
The Mann–Whitney test (also called the Mann–Whitney–Wilcoxon (MWW/MWU), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric statistical test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.
The test is named after Frank Wilcoxon (1892–1965) who, in a single paper, proposed both it and the rank-sum test for two independent samples. [3] The test was popularized by Sidney Siegel (1956) in his influential textbook on non-parametric statistics. [4]
A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test.
In statistics, a ranklet is an orientation-selective non-parametric feature which is based on the computation of Mann–Whitney–Wilcoxon (MWW) rank-sum test statistics. [1] Ranklets achieve similar response to Haar wavelets as they share the same pattern of orientation-selectivity, multi-scale nature and a suitable notion of completeness. [2]
Mann–Whitney U or Wilcoxon rank sum test: tests whether two samples are drawn from the same distribution, as compared to a given alternative hypothesis. McNemar's test: tests whether, in 2 × 2 contingency tables with a dichotomous trait and matched pairs of subjects, row and column marginal frequencies are equal.
It may result in a known statistic (e.g., in the two independent samples layout ranking results in the Wilcoxon rank-sum / Mann–Whitney U test), and provides the desired robustness and increased statistical power that is sought.
To test the difference between groups for significance a Wilcoxon rank sum test is used, which also justifies the notation W A and W B in calculating the rank sums. From the rank sums the U statistics are calculated by subtracting off the minimum possible score, n(n + 1)/2 for each group: [1] U A = 54 − 7(8)/2 = 26 U B = 37 − 6(7)/2 = 16
In some cases, the observations for all subjects can be assigned a rank value (1, 2, 3, ...). If the observations can be ranked, and each observation in a pair is a random sample from a symmetric distribution, then the Wilcoxon signed-rank test is appropriate. The Wilcoxon test will generally have greater power to detect differences than the ...