Ad
related to: magnification formula for convex mirror equation generator worksheet
Search results
Results from the WOW.Com Content Network
Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
A convex mirror diagram showing the focus, focal length, centre of curvature, principal axis, etc. A convex mirror or diverging mirror is a curved mirror in which the reflective surface bulges towards the light source. [1] Convex mirrors reflect light outwards, therefore they are not used to focus light.
The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.
Houghton doublet corrector design equations – special case symmetric design. The Houghton telescope or Lurie–Houghton telescope is a design that uses a wide compound positive-negative lens over the entire front aperture to correct spherical aberration of the main mirror. If desired, the two corrector elements can be made with the same type ...
Similarly to curved mirrors, thin lenses follow a simple equation that determines the location of the images given a particular focal length and object distance (): + = where is the distance associated with the image and is considered by convention to be negative if on the same side of the lens as the object and positive if on the opposite side ...
For people looking at the mirror, the object A is apparently located at the position of A' although it does not physically exist there. The magnification of the virtual image formed by the plane mirror is 1. Top: The formation of a virtual image using a diverging lens. Bottom: The formation of a virtual image using a convex mirror.
Each optical element (surface, interface, mirror, or beam travel) is described by a 2 × 2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system.
Optical magnification is the ratio between the apparent size of an object (or its size in an image) and its true size, and thus it is a dimensionless number. Optical magnification is sometimes referred to as "power" (for example "10× power"), although this can lead to confusion with optical power.
Ad
related to: magnification formula for convex mirror equation generator worksheet