enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The ...

  3. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.

  4. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  5. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    The following test can be applied at any critical point a for which the Hessian matrix is invertible: If the Hessian is positive definite (equivalently, has all eigenvalues positive) at a, then f attains a local minimum at a. If the Hessian is negative definite (equivalently, has all eigenvalues negative) at a, then f attains a local maximum at a.

  6. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    A matrix of partial derivatives, the Jacobian matrix, may be used to represent the derivative of a function between two spaces of arbitrary dimension. The derivative can thus be understood as a linear transformation which directly varies from point to point in the domain of the function.

  7. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    That is, the Jacobian of a composite function is the product of the Jacobians of the composed functions (evaluated at the appropriate points). The higher-dimensional chain rule is a generalization of the one-dimensional chain rule. If k, m, and n are 1, so that f : R → R and g : R → R, then the Jacobian matrices of f and g are 1 × 1.

  8. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    In other words, the matrix of the second-order partial derivatives, known as the Hessian matrix, is a symmetric matrix. Sufficient conditions for the symmetry to hold are given by Schwarz's theorem, also called Clairaut's theorem or Young's theorem. [1] [2]

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Vectorization is used in matrix calculus and its applications in establishing e.g., moments of random vectors and matrices, asymptotics, as well as Jacobian and Hessian matrices. [5] It is also used in local sensitivity and statistical diagnostics. [6]