Search results
Results from the WOW.Com Content Network
The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]
The calculation for the K factor is given by the formula: DHV= K*AADT. in which DHV is the "Design Hourly Volume," the 30th highest hourly traffic volume (in both directions) in the year in which data was collected, by vehicles per hour. [4]
K factor (crude oil refining), a system for classifying crude oil; K-factor (fire protection), formula used to calculate the discharge rate from a fire system nozzle; K-factor (metalurgy), formulae used to calculate the bending capacity of sheet metal; K factor (traffic engineering), the proportion of annual average daily traffic occurring in ...
The moment distribution method is a structural analysis method for statically indeterminate beams and frames developed by Hardy Cross. It was published in 1930 in an ASCE journal. [ 1 ] The method only accounts for flexural effects and ignores axial and shear effects.
In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1] It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle ...
A very simple model called the K-factor model is sometimes used. This approximates the delay as a constant plus k times the load capacitance. A more complex model called Delay Calculation Language, [4] or DCL, calls a user-defined program whenever a delay value is required. This allows arbitrarily complex models to be represented, but raises ...
The Forming analysis system software interprets the images and generates 3D measuring data. In order to compute the strain, the flat state is compared to the deformed state. (#1 & #2) In a standard measuring project, the flat state, the strain reference, is not captured optically but results from the theoretical point distance defined in the ...
The Kaiser–Meyer–Olkin (KMO) test is a statistical measure to determine how suited data is for factor analysis. The test measures sampling adequacy for each variable in the model and the complete model. The statistic is a measure of the proportion of variance among variables that might be common variance.