Search results
Results from the WOW.Com Content Network
The number of iterations needed for , to reach a fixed point is the Dudeney function's persistence of , and undefined if it never reaches a fixed point. It can be shown that given a number base b {\displaystyle b} and power p {\displaystyle p} , the maximum Dudeney root has to satisfy this bound:
The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2 3 = 8 or (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as
In general, a cube is an n-dimensional array. The rank of a cube is its dimensionality. A scalar is a cube of rank 0, a vector is a cube of rank 1, and a matrix is rank 2. Following tensor notation: the number of indices a cube has designates its rank.
As most integers are not squares, when working over the field Q of the rational numbers, the Galois group of most irreducible cubic polynomials is the group S 3 with six elements. An example of a Galois group A 3 with three elements is given by p(x) = x 3 − 3x − 1, whose discriminant is 81 = 9 2.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
A snippet of C code which prints "Hello, World!". The syntax of the C programming language is the set of rules governing writing of software in C. It is designed to allow for programs that are extremely terse, have a close relationship with the resulting object code, and yet provide relatively high-level data abstraction.
Adjoining the real cube root of 2 to the rational numbers gives the cubic field (). This is an example of a pure cubic field, and hence of a complex cubic field. In fact, of all pure cubic fields, it has the smallest discriminant (in absolute value), namely −108. [2]
The minimal enclosing box of the regular tetrahedron is a cube, with side length 1/ √ 2 that of the tetrahedron; for instance, a regular tetrahedron with side length √ 2 fits into a unit cube, with the tetrahedron's vertices lying at the vertices (0,0,0), (0,1,1), (1,0,1) and (1,1,0) of the unit cube. [7]