Search results
Results from the WOW.Com Content Network
The graph of the Dirac delta is usually thought of as following the whole x-axis and the positive y-axis. [5]: 174 The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point.
The HTM neuron model was developed by Jeff Hawkins and researchers at Numenta and is based on a theory called Hierarchical Temporal Memory, originally described in the book On Intelligence. It is based on neuroscience and the physiology and interaction of pyramidal neurons in the neocortex of the human brain.
It was named after Richard FitzHugh (1922–2007) [2] who suggested the system in 1961 [3] and Jinichi Nagumo et al. who created the equivalent circuit the following year. [4]In the original papers of FitzHugh, this model was called Bonhoeffer–Van der Pol oscillator (named after Karl-Friedrich Bonhoeffer and Balthasar van der Pol) because it contains the Van der Pol oscillator as a special ...
The initial impulse can acquire a stable shape under such circumstances, in general known as a solitary wave. [12] Solitons are the simplest solution of the set of nonlinear wave equations governing such phenomenon and were applied to model nerve impulse in 2005 by Thomas Heimburg and Andrew D. Jackson, [ 13 ] [ 14 ] [ 15 ] both at the Niels ...
The impulse can be modeled as a Dirac delta function for continuous-time systems, or as the discrete unit sample function for discrete-time systems. The Dirac delta represents the limiting case of a pulse made very short in time while maintaining its area or integral (thus giving an infinitely high peak).
Basic ways that neurons can interact with each other when converting input to output. Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs ...
In physiology, the all-or-none law (sometimes the all-or-none principle or all-or-nothing law) is the principle that if a single nerve fibre is stimulated, it will always give a maximal response and produce an electrical impulse of a single amplitude. If the intensity or duration of the stimulus is increased, the height of the impulse will ...
A biological network is a method of representing systems as complex sets of binary interactions or relations between various biological entities. [1] In general, networks or graphs are used to capture relationships between entities or objects. [1]