enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection number (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_number_(graph...

    The intersection number of the graph is the smallest number such that there exists a representation of this type for which the union of the sets in has elements. [1] The problem of finding an intersection representation of a graph with a given number of elements is known as the intersection graph basis problem .

  3. Graph operations - Wikipedia

    en.wikipedia.org/wiki/Graph_operations

    There are two definitions. In the most common one, the disjoint union of graphs, the union is assumed to be disjoint. Less commonly (though more consistent with the general definition of union in mathematics) the union of two graphs is defined as the graph (V 1 ∪ V 2, E 1 ∪ E 2). graph intersection: G 1 ∩ G 2 = (V 1 ∩ V 2, E 1 ∩ E 2); [1]

  4. Intersection graph - Wikipedia

    en.wikipedia.org/wiki/Intersection_graph

    The line graph of a graph G is defined as the intersection graph of the edges of G, where we represent each edge as the set of its two endpoints. A string graph is the intersection graph of curves on a plane. A graph has boxicity k if it is the intersection graph of multidimensional boxes of dimension k, but not of any smaller dimension.

  5. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:

  6. Clique (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Clique_(graph_theory)

    Moreover, the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G. The intersection number of G is the smallest number of cliques that together cover all edges of G. The clique cover number of a graph G is the smallest number of cliques of G whose union covers the set of vertices V of the graph.

  7. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...

  8. Line graph - Wikipedia

    en.wikipedia.org/wiki/Line_graph

    A line graph has an articulation point if and only if the underlying graph has a bridge for which neither endpoint has degree one. [2] For a graph G with n vertices and m edges, the number of vertices of the line graph L(G) is m, and the number of edges of L(G) is half the sum of the squares of the degrees of the vertices in G, minus m. [6]

  9. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero (⁠ ⁠) sets and it is by definition equal to the empty set.